CUSTOMER STORY
Personalized Recommendations at Dixons Carphone
Dixons Carphone leverages behavioral data with award-winning use of AI to improve customer experience
Challenge
- Bundle attach rates on their website was lower than in-store
- Initial product attachment effort was a manual process (no personalization)
- Dixons built a generic collaborative filtering recommendation model but were unable to productionize it on their website
- Adobe analytics data was very complex and difficult to view at an individual level
Solution
Syntasa plugged natively into Dixons Carphone’s existing technologies and within their GCP environment to synthesize behavioral data so that it could be available for analysis right away. To produce personalized recommendations, Syntasa built a Nearest Neighbor model to generate a neighborhood of similar customers, based on browsing behavior and products purchased together by similar customers.
Use Cases
- AI-Assisted Merchandising
- Product Recommendations
- Identity Resolution
- Adobe Analytics Adapter
Results
- Product coverage has doubled
- Add-to-basket rates have increased 3x


“Syntasa has been really invaluable in speeding up our time to value by architecting our Adobe Analytics data and productionizing data science and machine learning modeling at scale, and in such a way that we can confidently pass that into production systems to drive the user experience.”
Paula Bobbett
Head of Online Performance, Dixons Carphone

“What we had a challenge with was the ability to look at the granular detail of the user-level data, so that we can start to look at what an individual customer is doing (and might do) on our website.”
Chris Ward
Former Ecommerce Insight Manager, Dixons Carphone
See Syntasa in action
Actions speak louder than words. See what an AI assisted customer intelligence platform looks like in action.